
DISCOVER . LEARN . EMPOWER

University Institute of Engineering
DEPARTMENT OF COMPUTER SCIENCE

& ENGINEERING
Bachelor of Engineering

Subject Name: System Programming
Subject Code: CST-315

Department of Computer Science

1
Assemblers

Chapter-1.2
Assemblers

• Elements of Assembly Language Programming

• Design of the Assembler

• Assembler Design Criteria

Department of computer Science

2

Assembler
• An assembler is a program that converts assembly language into

machine code.
• It takes the basic commands and operations from assembly code and

converts them into binary code that can be recognized by a specific
type of processor.
• Assemblers are similar to compilers in that they produce executable

code.
• However, assemblers are more simplistic since they only convert low-

level code (assembly language) to machine code.
• Since each assembly language is designed for a specific processor,

assembling a program is performed using a simple one-to-one
mapping from assembly code to machine code.

3

Assembler

• It generates instructions by evaluating the mnemonics (symbols) in
operation field and find the value of symbol and literals to produce
machine code.
• Now, if assembler do all this work in one scan then it is called single

pass assembler, otherwise if it does in multiple scans then called
multiple pass assembler.

4

Elements of Assembly Language

Machine language is very difficult to program in directly.
Understanding the meanings of the numerical-coded instructions is
tedious for humans.
For example, the instruction that says to add the EAX and EBX
registers together and store the result back into EAX is encoded by the
following hexcodes: 03 C3

Assembly language is basically like any other language, which means
that it has its words, rules and syntax. The basic elements of assembly
language are:
Labels;
Orders;
Directives; and
Comments. 5

Elements of Assembly Language
Syntax of Assembly language
• When writing a program in assembly language it is necessary to observe specific

rules in order to enable the process of compiling into executable “HEX-code” to
run without errors. These compulsory rules are called syntax and there are only
several of them: Every program line may consist of a maximum of 255 characters;
• Every program line to be compiled, must start with a symbol, label, mnemonics

or directive;
• Text following the mark “;” in a program line represents a comment ignored (not

compiled) by the assembler; and
• All the elements of one program line (labels, instructions etc.) must be separated

by at least one space character. For the sake of better clearness, a push button
TAB on a keyboard is commonly used instead of it, so that it is easy to delimit
columns with labels, directives etc. in a program.

6

Elements of Assembly Language

Numbers
If octal number system, otherwise considered as obsolete, is
disregarded, assembly language allows numbers to be used in one
out of three number systems:

• Decimal Numbers
• Hexadecimal Numbers
• Binary Numbers

7

Elements of Assembly Language

• Operators

Some of the assembly-used commands use logical and mathematical
expressions instead of symbols having specific values.

Addition Subtraction Multiplication
Division &Bitwise logical AND Bitwise logical OR

>>Shift right <<Shift left %Remainder
Bitwise logical AND NOT Bitwise logical XOR

8

Elements of Assembly Language

Symbols

• Every register, constant, address or subroutine can be assigned a specific
symbol in assembly language, which considerably facilitates the process of
writing a program.
• For the purpose of writing symbols in assembly language, all letters from

alphabet (A-Z, a-z), decimal numbers (0-9) and two special characters ("?"
and "_") can be used. Assembly language is not case sensitive.
• For example, the following symbols will be considered

identical:Serial_Port_Buffer SERIAL_PORT_BUFFER

9

Elements of Assembly Language

Symbols (Contd..)

• In order to distinguish symbols from constants (numbers), every
symbol starts with a letter or one of two special characters (? or _).
• The symbol may consist of maximum of 255 characters, but only first

32 are taken into account.
• Some of the symbols cannot be used when writing a program in

assembly language because they are already part of instructions or
assembly directives.

10

Elements of Assembly Language
Label

• A label is a special type of symbols used to represent a textual version
of an address in ROM or RAM memory. They are always placed at the
beginning of a program line. It is very complicated to call a subroutine
or execute some of the jump or branch instructions without them.
They are easily used:A symbol (label) with some easily recognizable
name should be written at the beginning of a program line from
which a subroutine starts or where jump should be executed.
• It is sufficient to enter the name of label instead of address in the

form of 16-bit number in instructions calling a subroutine or jump.
• During the process of compiling, the assembler automatically

replaces such symbols with appropriate addresses.

11

Elements of Assembly Language

• Directives
Unlike instructions being compiled and written to chip program memory,
directives are commands of assembly language itself and have no influence
on the operation of the microcontroller. Some of them are obligatory part
of every program while some are used only to facilitate or speed up the
operation. Directives are written in the column reserved for instructions.
There is a rule allowing only one directive per program line.

Eg. EQU directive and SET directive
• The EQU directive is used to replace a number by a symbol.
• The SET directive is also used to replace a number by a symbol

12

Design of Assembler

General design procedure
• specify the problem
1.specify the data structure
2.define format of data structure
3.specify algorithm
4.look for modularity

repeat 1 ~ 5 on modules

13

Design of Assembler
• Objectives
• 1. Generate instructions Evaluate the mnemonic in the operation field to produce

its machine code
1. Find the value of each symbol, process literals
2. Process pseudo ops
• Assembler divide these tasks in two passes:
• Pass-1:
• Define symbols and literals and remember them in symbol table and literal

table respectively.
• Keep track of location counter
• Process pseudo-operations

• Pass-2:
• Generate object code by converting symbolic op-code into respective

numeric op-code
• Generate data for literals and look for values of symbols

•

14

Design of Assembler

Pass 1:define symbols & literals
• Determine length of each instruction Keep track of LC Remember

values of symbols until pass
• Process some pseudo ops Remember literals

Pass 2: generate object program Look up values of symbols
• Generate instructions
• Generate data Process pseudo ops

15

Design of Assembler
Pass 1 data bases Pass 2 databases

• Input source program A -Copy of source program input to pass 1
• LC

-LC
• A MOT (Machine Operation Table) -MOT
• A POT (Pseudo operation Table) -POT
• A ST (Symbol Table) -ST
• A LT (Literal Table) -BT (Base table)
• A copy of the input to be used by pass 2

16

Assembler Design Criteria

Design Specification of an assembler
Four step approach to develop a design specification

1) Identify the information necessary to perform a task
2) Design a suitable data structure to record the information
3) Determine the processing necessary to obtain and maintain

the information.
4) Determine the processing necessary to perform the task

17

• https://techterms.com/definition/assembler#:~:text=An%20assembl
er%20is%20a%20program%20that%20converts%20assembly%20lang
uage%20into%20machine%20code.&text=Most%20programs%20are
%20written%20in,perform%20in%20a%20specific%20way.
• https://www.geeksforgeeks.org/introduction-of-assembler/
• https://www.techopedia.com/definition/3971/assembler
• https://techterms.com/definition/assembly_language#:~:text=An%2

0assembly%20language%20is%20a,machine%20code%20using%20an
%20assembler.

References
Department of computer Science

18

https://techterms.com/definition/assembler
https://www.geeksforgeeks.org/introduction-of-assembler/
https://www.techopedia.com/definition/3971/assembler
https://techterms.com/definition/assembly_language

THANK YOU

19

